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In this paper the polymer/wall interface is simulated under simple shear by using the method of 
Brownian dynamics. The polymer system is considered as a network of polymer strands whose dynamics 
are described by a Hookean dumbbell model. The dumbbells break off the wall due to the excessive 
tension imposed by the bulk fluid motion and, as a result, slip occurs at the interface. The convection 
equation arising in kinetic theories of polymeric liquids is solved to calculate the time evolution of the 
configurational distribution function *(Q, t )  by using a direct -stochastic interpretation method 1121. 
The stress tensor and the slip velocity are calculated by averaging the proper relations over a large 
number of Hookean dumbbells. Because the model probabilisitically evolves in time, dynamic slip 
velocity calculations become possible for the first time. Finally, the results are compared with 
experimental slip velocity data. 

KEY WORDS Dynamic slip, Brownian dynamics, polyethylene, interface failure 

INTRODUCTION 

In the processing of polymer plastics, the polymer melts are subject to such large 
and rapid deformations that the shear stress at a solid wall can reach very high 
levels and, as a result, the no-slip boundary condition ceases to be valid [l-31. To 
simulate such processes realistically, it is necessary to have available slip velocity 
models, which can adequately describe both the dynamic and steady-state behavior 
of the slip phenomenon. 

Several slip velocity models have been proposed in the literature [1-8] which 
are capable of describing only steady-state slip velocity data (static slip velocity 
models). However, their use in the numerical simulation of polymer processes is 
limited, due to the fact that slip exhibits characteristics of a relaxation process. 

Hatzikiriakos and Dealy [3] carried out steady and dynamic shear experiments 
(exponential and large amplitude oscillatory shear) in a sliding plate rheometer to 
study the slip behavior of a high-density polyethylene (Sclair 56B). They found that 
the steady-state slip velocity data determined from steady shear experiments could 
not explain the shear stress response obtained from dynamic experiments. A finite 
time (slip relaxation time) is required for slip to attain its steady-state value. In 
addition, in very rapid deformations slip may not occur even if the shear stress 
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88 S .  G .  HATZIKIRIAKOS 

exceeds the critical value provided that the strain is relatively small [9]. These 
observations of dynamic slip cannot be explained by a static slip velocity model. 

A dynamic slip velocity model was recently developed by Hatzikiriakos and 
Kalogerakis [lo]. The behavior of a polymer/metal interface was simulated by 
using a network kinetic theory. The polymer segments were modeled as Hookean 
springs which are deformed affinely.In this paper, the dynamics of the polymer 
segments are described by Hookean dumbbells which do not only feel the affine 
deformation but also a retractive force and Brownian motion. The resulting 
diffusion equation (Fokker-Planck) is solved numerically by using a method devel- 
oped by Petruccione and Biller [11,121 in order to calculate the shear stress and 
slip velocity as functions of time in steady and dynamic shear flows. 

POLYMER NETWORK MODELS 

A rubber is considered to be composed of strands which are permanently cross-lin- 
ked at junctions. To allow for a liquid-like behavior these permanent entangle- 
ments are considered to be only temporary in the case of polymer melts. Thus an 
idealized polymer network model consists of segments temporarily cross-linked at 
junctions which break up and reform continuously. Each polymer segment can be 
represented by a vector, Q, which defines its size and orientation. 

The vectors Q follow the configurational distribution function * whose time 
evolution is governed by a PDE which is known as the convection equation in 
kinetic theory for polymer solutions and melts [13]. This equation, for an ensemble 
of Hookean dumbbells, which not only feel the affinedeformation but also a 
retractive frictional force and a Brownian random motion, takes the following form 
D41. 

where K' is the velocity gradient tensor, 13r is the configurational distribution 
function of the vectors Q,h(Q> is the proportionality constant of the rates of 
creation and loss of dumbbells, and F is the Hookean spring force ( F  = HQ). 
Note that the rate of loss is assumed to be proportional to the configuration 
distribution function 9, and the rate of creation is assumed to be proportional to 
the equilibrium distribution function lko [ l l ,  121. 

The equilibrium distribution, 13ro, is assumed to be a trivariate Gaussian distri- 
bution which reduces to 

where u 2  is one-third of the mean-square equilibrium length of the dumbbells, 
and no is the equilibrium number density of the segments of the network (number 
of polymer segments per unit volume). 
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POLYMER. / WALL INTERFACE SIMULATION 89 

The stress tensor can be evaluated by averaging the tension of all Hookean 
dumbbells, 

7 = H(QQ> (3) 

where H is the Hookean constant of the spring defined as H = nokT/cr2, k is the 
Boltzman’s constant and T is the absolute temperature. 

To solve Equation (l), one has to specify h(Q) and the type of flow, that is, the 
tensor K .  In this paper the slip velocity is studied for simple shear flow occurring in 
the space between two parallel plates by means of a sliding plate rheometer. 
Namely, the polymer is placed in the space between two parallel plates and at 
time, t = 0, the upper plate starts moving with velocity V. The nominal shear rate 
in this case is defined as the ratio of the velocity of the upper plate to the gap 
spacing between the two plates d, this is i;, = V/d .  For zero slip velocity the 
nominal i,,, and actual shear rates i, are the same. However, under slip conditions 
one may easily show that, 

2% 
d y,, V / d  = i, + - 

For simple shear the tensor K is 

The dynamics of the vectors Q satisfy the following Langevin equation, 

(4) 

where 7 is Gaussian white noise with zero mean and the two time correlations 

More details one may find in references 14-17. 

form of h(Q) proposed by I’etruccione and Biller [ l l ,  121 is considered, 
To quantify the net rate of creation of the dumbbells,the following functional 

h(&)  = i [ l  + ,,(l + 231 
A0 

where A, is a time constant and E is a dimensionless parameter. Equation (8) has 
been found to give reasonable rheological predictions in simple flows [ l l ,  121. This 
equation should be modified before applied to dumbbells at the polymer/wall 
interface. This is done in the next section. 
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90 S. G. HATZIKIRIAKOS 

POLYMER / WALL INTERFACE 

Consider that the polymer is attached to a rigid wall through Hookean dumbbells. 
For each dumbbell at the interface, two types of links are considered. A link of 
type A between segments (temporary cross-links) and a link of type B between the 
solid wall and the dumbbell. Dumbbells are lost more frequently due to destruc- 
tion of links of type A than due to the destruction of links of type B. This should 
be taken into account in modifying the loss rate function at the polymer/wall 
interface. 

We assume that the number of active sites per unit area of solid wall at 
equilibrium is nb. The surface density, n’,, should be related to the number density, 
no, through a length scale comparable to the absolute average length of polymer 
segments in the direction normal to the solid boundaly, that is (T. These numbers 
have the same value but different units. n’,, is the number of segments per unit area 
and no is the number of segments per unit volume. 
As a proper function for the constant of the dumbbell loss rate at the 

polymer/wall interface due to the destruction of their B-links, we modify Equation 
(8) as follows, 

1 [ ( 
(IIQII - Q * ) * ) ]  

A0 (T2 
h’(Q,Q*) = - 1 + log 1 + E 

where Q* is a critical length above which the tension of the strand is capable of 
overcoming the work of adhesion [lo]. Equation (8) determines the number of 
segments to be removed from the ensemble. However to calculate how many of the 
lost segments are destructed due to the destruction of their B-link, Equation (9) is 
used. These segments contribute to the slip velocity calculation. 

To calculate the slip velocity, the following expression is proposed: 

where n is a unit vector parallel to the direction of flow, and t,z is the hovering 
time of each broken dumbbell (time elapsed between the breakage and reforma- 
tion of the adhesive link). 

After breaking off the wall, the dumbbells start relaxing before they become 
candidates for entering the ensemble again. For simplicity the hovering time is 
assumed to be the same for all members of the ensemble. Note that in the slip 
velocity calculations if a dumbbell is lost due to the breakage of its A-link, it is not 
taken into account in the slip velocity calculations. Only loss of dumbbells due to 
the destruction of their B-link conpibutes to slip calculations. 

SIMULATION 

Before the simulation, the equations are nondimensionalized by using the energy 
scale kT, the length scale u, and time scale A,. Equation (1) is solved by using a 
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POLYMER / WALL INTERFACE SIMULATION 91 

numerical method developed by Petruccione and Biller Ell, 121. According to this 
method, the diffusion equation (Eq. 1) is translated into a stochastic Langevin 
equation (Eq. 7). In step form this is: 

SI. Generate a Gaussian distribution consisting of No dumbbells at time 0. Due 
to the fact that polymer segments at the interface have a preferred direction, the 
method of “reflecting wall” is used to correct their y-component (normal to the 
solid wall) which should always be positive. Such a distribution is also used later in 
the simulation for reformation of the broken dumbbells. 

S2. For each dumbbell iri the actual ensemble calculate the new configuration 
after a small time step A t :  Q(t + dt)  = Q(t )  + A ~ [ ( K ( Y ,  t)Q(t) - 0.5Q(t)l 
+ &f(t), where f(t) is a normally distributed random numbe [14]. Note that the 
Euler stochastic integration scheme is used to discretize Equation (7) (It0 stochas- 
tic interpretation). Note also that Equation (5) should be used to calculate the true 
shear rate. 
S3. For each dumbbell calculate the probability that is lost due to destruction of 

its A-link at the time interval A t ,  that is p = 1 - exp{-h A t ] .  Also for each 
dumbbell with a length greater or equal to Q* calculate the probability that breaks 
off the wall at the time interval At ,  that is p ’  = 1 - exp{h’ A t ] .  Note that p is 
much less than p ’  and most of the dumbbells are lost due to the desstruction of 
their A-link. Keep record of‘ those that break off the wall for the slip calculations. 

S4. Calculate the mean wall shear stress and the mean slip velocity by averaging 
over all the ensemble. Note again that destruction of type-l? links does not 
contribute to the slip calculations. 

S5. Calculate the probabilities that some of the destructed dumbbells reform 
and include them into the ensemble. 

S6.  If desired time has been reached end the simulation, otherwise repeat steps 
2-6. 

S7. Finally repeat the calculations for several time steps (here we have used 
A t / h o  = 0.02,0.05,0.08) because the results are time-step dependent. Use linear 
extrapolation to time step zero in order to obtain the final results [MI. 

VlSCOSlTY 

In the subsequent sections, we discuss the simulation results and compare them 
with available experimental data for a high density polyethylene (HDPE, resin 
Sclair 56B) reported in reference 3. Some of the results are presented in dimen- 
sionless form. 

First we calculated the viscosity. This is necessary in order to fit some of the 
model parameters. Viscosity calculations were perfomed with ensembles of 50,000 
dumbbells which were found to give good statistics. The simulations were run for 
three time steps ( A t / A o  = 0.02,0.05,0.08) and the results were linearly extrapo- 
lated to time step of zero. A. small correction was resulted from this procedure. 

Figure 1 compares the viscosity of a HDPE (Sclair 56B), with that calculated 
from the simulations. Excellent agreement is obtained for A, = 0.4 s, nokT = 
1.15 x lo5 Pa and E = 0.1. Once the viscosity has been fitted, thus adjusting some 
of the parameters, slip calculations are performed next. 
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RESIN 5 6 B  . .  0 
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i (s-3 
FIGURE 1 The experimental and calculated viscosity of resin Sclair 56B at 180°C. The viscosity was 
fitted using n&T = 1.15 x lo5 Pa, A, = 0.4 s, and E = 0.1. 

SLIP IN STEADY SHEAR 

Resin Sclair 56B slips over metal surfaces for wall shear stresses greater than the 
critical value of 0.09 Mpa [3]. Using this value, one may estimate the value of Q* 
that predicts a flow curve which deviates from the no-slip flow curve at the critical 
value of 0.09 MPa. It was found that a value of dimensionless Q* of 100 estimates 
the critical wall shear stress for the onset of slip to be about 0.09 MPa. 
As was noted above, the results depend on the chosen time step and therefore 

the simulations should be run for at least three different time steps ( A t / &  = 0.02, 
0.05 and 0.08 were used here). Consequently, linear interpolation to time step zero 
is used to determine the final results. Figures 2 and 3 illustrate this for the slip 
velocity and shear stress calculations. It can be seen that the slip velocity is clearly 
time-step dependent and a large correction results by using linear interpolation. 
However, for the shear stress the resulting correction is much smaller as can be 
seen in Figure 3. 

100 

ao 

m 
b 60 
G 
r o  

40 3 
20 

0 
0 1 2 3 

t / A o  

FIGURE 2 Dimensionless slip velocity vs time curves in a steady shear numerical experiment for 
three time steps (At/A, = 0.02,0.05,0.08). Note that the obtained curves are time-step dependent and 
a linear interpolation is required to obtain the final results which correspond to time-step zero. 
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0 1 2 3 

t / A o  

FIGURE 3 The corresponding to Figure 2 dimensionless shear stress vs time curves. 

Figure 4 shows dimensionless slip velocity curves for several values of the 
nominal shear rate. It can be observed that at the dimensionless nominal shear 
rate of 100 the no-slip boundary condition ceases to be valid and a small but finite 
slip velocity is calculated. In can also be seen that the steady state value of the slip 
velocity increases with nominal shear rate and thus with wall shear stress. Note 
that the slip velocity curves do not start from the origin. This is due to the fact that 
for slip to occur, the wall shear stress should be higher than a critical value. In 
addition, slip is a relaxation process and a finite time is required before it attains 
its full effect. This will be clear in the next section, where the dynamics of slip are 
discussed. 

Figure 5 is the corresponding shear stress curves to Figure 4. It can be seen that 
the shear stress increases with time and after overshooting it relaxes to its 
steady-state value. Also the steady-state value of the wall shear stress increases 
with dimensionless nominal shear rate as expected. Comparing Figures 4 and 5, it 
can be observed that the shear stress curves are much smoother (better statistics) 

140 

120 

~ 100 

c 80 
‘0 

b \ o  

60 

40 

20 
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0 1 2 3 

t h o  

FIGURE 4 Dimensionless slip velocity curves in steady shear experiments for several nominal shear 
rates. 
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30 
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0 1 2 3 

t / A ,  
FIGURE 5 The corresponding shear stress curves of Figure 4 for several nominal shear rates. 

than those of the slip velocity. This is due to the fact that the number of polymer 
dumbbells considered in the shear stress calculations is significantly larger than 
that which contributes to the slip velocity calculations (dumbbells which break off 
the wall). 

In the slip simulations, the gap spacing between the two parallel plates should 
be defined as opposed to the viscosity calculations (no-slip). In the latter case the 
calculations are independent of the geometric dimensions. We define a dimension- 
less gap, d* = dA,/n\cr3t, whose form can be obtained from Equation (4). Slip 
velocities were calculated for several values of the dimensionless gap d* (namely, 
3, 5, and lo), in order to ensure the consistency of calculations. As may be seen 
from Figure 6, the us-uw relationship is independent of d*. 

Figure 6 also compares the slip velocity data of Sclair 56B at four temperatures 
as a function of the wall shear stress reported in reference 3 with the model 
predictions. Note that all the data have been reduced to 180°C by using the shift 
factor, uT, of the time-temperature superposition method. The calculated slip 

5 
RESIN 56B - 

v1 
\ 
E 
0 
v 

v 145 OC 
A 160 

I Calculated 
2 

0.08 0.1 2 0.1 6 0.20 

FIGURE 6 Experimental and calculated slip velocities of resin Sclair 56B for several temperatures 
and gap spacings. The experimental data have been reduced to 180°C by using the time-temperature 
superposition method. 
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POLYMER/ WALL INTERFACE SIMULATION 95 

velocity depends on the temperature through the relaxation time, A,, which, 
according to the network kinetic theory of polymer melts, is assumed to be 
proportional to the shift factor a, [13]. The data were fitted by using n,kT = 
1.15 X lo5 Pa (determined in fitting the viscosity) and n\a3t,/A2, = 0.012 cm/s; 
the agreement seems to be satisfactory. 

SLIP IN TRANSIENT SHEAR 

Exponential Shear 

Exponential shear is a strong flow and it has been discussed in detail in reference 
19. In this flow the nominal strain varies with time as follows 

where A is the strain scale factor and a is the exponential rate constant. Note that 
under no-slip conditions the nominal strain is equal to the true strain y imposed to 
the polymer melt. 

Using a sliding plate rheometer, Hatzikiriakos and Dealy [3] carried out expo- 
nential shear experiments for resin Sclair 56B. They found that in rapid unsteady 
deformations, a relaxation time is required to explain the observed slip. Based on 
their findings, they proposed a phenomenological dynamic slip velocity model 
which explained qualitatively some of the experimental findings. 

Figure 7 plots the steady-state experimental slip velocity together with dynamic 
experimental slip velocity for two different deformation histories. The dynamic slip 
velocity data have been obtained from reference 20. The corresponding closed 
symbols are calculated slip velocities. First it can be seen from Figure 7 that the 
dynamic slip velocity is smaller than the calculated one. In addition, it can be seen 
that the deviation of the dynamic slip velocity curve depends on the rapidity of the 
deformation history. In the exponential shear, a measure of the deformation 

n c 
E 
0 
v 

5t 
0 y,=O.l(e -1) 

3 
0 .  

0' - I  
0.08 0.10 0.12 0.14 0.16 0.18 

a#P a 1 
FIGURE 7 Experimental and calculated steady-state slip velocities (also plotted in Figure 6 )  and 
experimental and calculated dynamic slip velocities for two exponential shear deformation histories. 
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rapidity is the exponential rate constant. Note that the model agrees qualitatively 
with this observation. However, as may be seen from Figure 7, the quantitative 
agreement is poor. It is our belief that this is due to the fact that in transient 
situations multiple relaxation times should be used. to obtain a reasonable quanti- 
tative agreement. In view of this, the recent work of Herman and Petruccione [21] 
is very useful. 

CONCLUSIONS 

A stochastic slip velocity model was developed to simulate the behavior of the 
polymer wall interface at high values of the wall shear stress where polymers has 
been observed to slip. This model is based on the network kinetic theory of 
polymer melts. The polymer system is considered as a network of polymer strands 
whose dynamics are described by the Hookean dumbbell model. The convection 
equation arising in this kinetic theory was solved to calculate the time evolution of 
the configuration distribution function Y’(Q,t> of the dumbbells. Based on this 
function, the wall shear stress and slip velocity were calculated by averaging the 
proper relations over a large number of polymer segments. 

The steady-state model predictions have been shown to be in good quantitative 
agreement with steady-state experimental results. In transient situations, it was 
found that a finite time is required before the onset of slip. Thus, while steady-state 
slip velocity data shows that the onset of slip occurs at a critical value of the wall 
shear stress, dynamic slip may first occur at considerably higher values of the wall 
shear stress. This was found to depend on the rapidity of the deformation. Finally, 
the model predictions were found to be in qualitative agreement with dynamic 
experimental observations. 
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Nomenclature 

Normally distributed random number 
spring force 
proportionality constant of rates of creation and loss of dumbbells 
constant of rate of loss of dumbbells due to destruction of their B-link 
Hookean spring constant 
Boltzman’s constant 
unit vector normal to the polymer/wall interface 
number density of dumbbells 
surface number density of dumbbells 
vector defining the size and orientation of a dumbbell 
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Q* 

t time 
th 
T absolute temperature 

critical length of a dumbbell beyond which the tension may overcome the 
work of adhesion 

hovering time of broken dumbbells 

Greek Letters 

nominal strain 
strain 
nominal shear rate 
shear rate 
dimensionless constant in the expressions of h(Q>, g(Q> 
friction coefficient 
viscosity 
White noise 
velocity gradient tensor 
time constant 
standard deviation of vectors Q at equilibrium 
wall shear stress 
critical shear stress for the onset of slip 
stress tensor 
equilibrium configuration distribution function of Q 
configuration distribution function of Q 
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